
A FRAMEWORK FOR CONVERSION OF SERIAL

PROGRAMMING PARADIGM INTO PARALLEL USING

ARCHITECTURE INDEPENDENT FACTORS

Chennupalli Srinivasulu1, Dr. Niraj Upadhyaya2 & Dr A.Govardhan3

1. INTRODUCTION

The variation of the performance for a same code model during different hardware architecture is majorly caused by the
hardware support such as preloading and probabilistic execution of the hardware. For a same input data set, the execution

time varies in different runs [1]. Nevertheless these variations are random and cannot be predicted, thus resulting into

variable performance benchmarks. Thus a proper model of converting the serial programming models into a parallel code

model is highly desired to ensure constant performance and improvements in the performance. In the last few years, a

significant number of researches are been carried out. The outcomes of those researchers are argued based on the viability

of the performance. The works are depended on the types of the architecture and bound by the architectural advantages.

Other research dimensional limitations observed in the parallel research outcomes are measures of the performance

improvements. Mostly the outcomes have demonstrated arithmetic average of the performances and demonstrated the

improvements, thus resulting into a demand for higher order and accurate analysis.

The higher order of analysis is demonstrated by a few researchers considering the normalized architectural effects on the

performance. The significant work by A. R. Alameldeenet. al. [1] and T. Kaliberaet. al. [2] has demonstrated the
techniques to reduce the effects of hardware acceleration and other factors to identity the normalized performance

measures of the programming models. Another notable work by T. Chenet. al. [3] demonstrate the use of non-parametric

testing for a similar code model on various architectures and demonstrated the threshold to be considered for reducing the

hardware effects on the analysis. Yet another leading research outcome by A. Georgeset. al. [4] considers the visual

analysis of the performances which can be a newer direction in measuring the performances. The analysis of the hardware

performance and influence of the hardware on the parallel programming models are hard to detect and the designers of the

computer architectural models are sometimes clueless in terms of the factors to be improved to improve the performance

of the parallel models. The work by D. J. Liljaet. al. [5] made a significant metric for dependent performance analysis of

the hardware to detect the factors influencing the computational performances. Also, the work by S. Krishnamurthiet. al.

[6] considerably explains the fact that programming models dependency on the hardware is strong. Nevertheless, with the

understanding of that the existence of the factors influencing the performances of the programming model, the

1 Research Scholar, JNTU Kakinada, AP, India.
2 Dean and Professor of CSE, JBIT, Hyderabad, TS, India.
3 Principal, JNTU Hyderabad, TS, India

Abstract- Growing demand for the increase of performance of the programming paradigms to match with the increased

demand for accommodating higher number of clients into smaller burst time to the processor is the significance and motivation

for the research. The performance demand of the programming and the performance availability of the processing capabilities

are the major trade-off in the recent advancements. The numerous research capabilities have demonstrated that the conversion

of any serial programming model into parallel can achieve significant improvement in the scale of execution time, thus

reducing the waiting time for the other processes running on the same processor and further improve the overall throughput of

the system. The researchers are divided into two ideologies in order to achieve parallel models from serial programming

models. The first demonstrated approach allows the developers and researchers to build the theoretical framework for

converting the serial code models to parallel and in the other hand use of automated interactive tools allow the developers and

researchers to build the parallel model from the serial code models automatically. Nevertheless, both demonstrated models can

be argued in the light of advantages and shortcomings. The conversion of code into parallel under the aegis of theoretical

framework is a highly time consuming task and demands higher knowledge on the parallel programming models. Nevertheless,

the automated frameworks can convert the code without much control over the parallel models generated from the framework

and argued for various uncontrolled performance variations. Thus the demand from the modern research is to build a

framework with stable rules for converting the serial models into the parallel code models and the same algorithm can be

implemented for interactive - controlled automation. Henceforth this work contributes in addressing the first demand to build

a set of rules for converting the serial codes into parallel models. Furthermore, this work also proposes an algorithm for code

conversion under the lights of novel defined rules. The yet another outcome of this work is to compare the proposed theoretical

model to build the thoughts in order to demonstrate significant improvements in performances.

Keywords— Parallel Programming, Loop Optimization, Output Dependency Reduction, Operator Reduction, CUDA, HPHPU

International Journal of Latest Trends in Engineering and Technology

Vol.(8)Issue(4-1), pp.215-222

DOI: http://dx.doi.org/10.21172/1.841.37

e-ISSN:2278-621X

A Framework For Conversion Of Serial Programming Paradigm Into Parallel Using Architecture

Independent Factors 216
independent factors of the programming model can be improved while converting a serial programming model into a
parallel computational model. This work enhances the performance of the serial programming models by converting into

parallel model with the emphasis on the architectural interdepend factors.

The rest of the paper is organized such as the second section focuses on the outcomes from the parallel researchers, in the

third section the independent factors of the programming model is elaborated and the thoughts of improvement is

established, in the fourth section of this paper the code conversion strategy is explained, in section – 5 the obtained results

are been discussed and this paper presents the conclusion in the final section as section – 6.

2. OUTCOME FROM THE PARALLEL RESEARCHES

The recent advancements in the field of parallel programming is out bounded and motivated by the recent enhancements

in the computer architecture. The biggest advancements in the recent years is the General Purpose Graphical Processing

Units and inclusion of the GPGPUs in the modern architecture. The GPGPUs made the parallel programming and
execution affordable in terms of the processing cost thus enhances the total performance of the system and makes the

business more profitable. To support the parallelism, various SDKs, runtimes and APIs are been introduced by the

companies inventing the GPGPUs. The use of these tools are extending the performance benefits and are been accepted

widely. The demonstration of the CUDA from nVIDIA [7] and the Open CL by the Stoneet. al. [8] has significantly

simplified the process of developing parallel programs for GPGPUs. The research outcomes by E. Alerstamet. al. [9] and

Larsen E. S.et. al. [10] have motivated the researchers and developers to use parallel programming models for scientific

applications. The image processing applications in the other hand demands even higher performance and parallelization

for better processing and in time results. Some of the real-time implementation such as automation of traffic signal

detection by Vladimir Glavtchevet a. [11], depth estimation from the real-time video sources by Woetzel J. at. Al [12] and

higher order segmentation processes by Rumpf M.et. al. [13] has also demonstrated the benefits of using the parallel

programming models. Also the animation and simulation operations focusing on processing higher order of the matrix

input values demands parallel programming. Two major demonstrations of these benefits are by Purcell T.et. al. [14] for
traceable inputs for graphical hardware acceleration and by Knott D.et. al. [15] for collision detection simulation.Also in

the domain of security focusing on AES cryptography demands the parallel programming and been adopted by various

researchers like Svetlin A. Manavski [16]. Nevertheless, these techniques are beneficial for developing the new

applications; however the legacy applications also demand the improvements in the performance. The majority of the

legacy programs and applications are built using the C programming languages. Thus conversion of these existing legacy

applications and programs are the demand of the industry and research. The research outcome by T. D. Hanet. al. [17] has

demonstrated the novel technique where the each functionality can be converted into separate modules and further can be

allocated to individual GPGPUs for parallel execution using CUDA.

The code conversion methods for serial models to the parallel have seen a wide range of applications and frameworks. The

automatic conversion of the source code into parallel execution is one of the approaches and widely accepted for the

simplicity of the conversion process. The reduced complexity and reduced need for the knowledge to convert the code is
the reason for this wide acceptance. The benefits are demonstrated by various researchers in the recent past. The work by

David B. Lovemanet. al [18] related to parallelization of Fortran code and demonstrated notable outcome as High

Performance Fortran or HPF. HPF focuses on the distributed memory based applications. Nevertheless, a number of

applications demand the shared memory architecture for performance improvements. The work by Leonardo Dagum et. al.

[19] has demonstrated the framework for such applications and widely accepted as OpenMP. Also various researchers

have exhibited the interactive tools for code conversion as vfAnalyst by VectorFabrics [20], SUIF Explorer by Stanford

University research group [21], and Polaris compiler by W. Blume et. al. [22] and ParaWise tool by Johnsonet. al.[23].

Nonetheless, the method for automatic conversion of the code or the process for manual conversion of the codes can be

argued under the circumstance of developer’s knowledge on parallelization or the complexity of the process for manual

and automatic process respectively. Thus the demand for simplification of the process for manual code conversion and the

higher control for the automatic conversion needs to be improved. In the next section, this work attempts to reduce the

complexity of manual code conversion by introducing simple rules and formulates the proofs of performance
improvements by those rules.

3. THE PROPOSED THEORETICAL FRAMEWORK

The theoretical framework relies on few fundamental rules. These rules are subjected to proof and validation for further

consideration and building the automatic framework algorithm. In this section, this work elaborates the rules and

demonstrates the benefits in mathematical terms. The proofs are constituted in terms of Lemmas and will further be used

to build the algorithm. Here this work formulates the lemmas consecutively.

Rule-1: The translation of the serial loops in the program necessarilyto be rehabilitatedtomandate the first level

parallelization of the instructions. The use of pre-fetched results must be incorporated in the further instruction processing.

Rule-1 Elaboration: The program source codes are constituted with several programming blocks, where the iterative

segments are often the larger parts. Thus converting the loops or the iterative segments will justify a significant amount of

source code to parallel code. The improvement of the performance is also notable after unfolding the iterative segments.

During the conversion process, the iterative statements needs to be readjusted in order to take the benefits from the pre-

fetch and previous calculation values stored in the memory. Also the independent instructions can be converted into

 Chennupalli Srinivasulu, Dr. Niraj Upadhyaya & Dr A.Govardhan 217

independent loops for parallel execution. Any sequential loop may have single or multiple statements to be iterated. These

statements may be dependent on the previous statement or can be independent. The independent instructions can be

executed in parallel [Table – 1].

Table I: Loop Parallelization – Independent Instructions

Original Code Parallel Code

Loop:

Do
A[i] = A[i] + 1;

B[i] = B[i] + 1;

Done

Loop:

Do
A[i] = A[i] + 1;

Done

Loop:

Do

B[i] = B[i] + 1;

Done

Another scenario may be demonstrated as the iterative instructions can be executed in parallel as the single instruction

refers to different memory location for each instance [Table – 2].

Table II: Loop Parallelization – Independent Memory Access

Original Code Parallel Code

Loop:
Do

A[i] = B[i] + C[i];

Done

Loop:
Do

start_Parallel();

A[i] = B[i] + C[i];

Strop_Parallel();

Done

Nevertheless, the performance benefits are subjected to demonstration of mathematical model.

Lemma – 1: The conversion of theiteration parallelization reduces the execution time significantly.

Here,

T1 denotes the amount of GPGPU time required to execute an instruction

T2 denotes the time for each memory read operations

N denotes the number of iterations

M1 denotes the number of instructions for GPGPU
M2 denotes the number of memory read operations

Proof: Firstly the calculations for the serial code in terms of time taken is to be done

1

1

() *
n

i

T Ins T N



 (Eq. 1)

And

2

1

() *
n

i

T Mem T N



 (Eq. 2)

Where, T(Ins) and T(Mem) denote the total time taken for executing CPU based instructions and memory operations

respectively.

Further, in case of a parallel execution the CPU instructions and the memory operations are designed to be performed in

parallel. Thus,

() () ()T P T Ins T Mem  (Eq. 3)

1 2

1 1

() * *
n n

i i

T P T N T N
 

  
 (Eq. 4)

Where, T(P) denotes the time taken to execute the instructions and memory operation in parallel design. The time taken

here will be the maximum time for executing the instruction or the memory operations whichever is higher.

Thus can be formulated as,

(), () ()
()

(), (Mem) ()

T Ins iff T Ins T Mem
T P

T Mem iff T T Ins





 (Eq. 5)

Hence, it is natural to say that the time required to execute the iteration will be less than the time required for executing

the CPU instructions and memory operations combined.

A Framework For Conversion Of Serial Programming Paradigm Into Parallel Using Architecture

Independent Factors 218

() () ()T P T Ins T Mem 

 (Eq. 6)

Hence it is to be considered that, the conversion of the loops will demonstrate improvements in the performance.

Rule-2: The output dependency for the instructions must be altered to rename the variables.

Rule-2 Elaboration: The serial programming models defines the series of instructions which need to be executed in the

specified order. In order to make the programming model execute in parallel, it is possible that the order of the sequence
of the instruction execution is changed. This reordering of the instructions is highly efficient in order to achieve the

parallelization. Nevertheless, it is also possible that due to the reordering the final output of the code may change. Thus it

is proposed to change the order with newer variable in case the dependencies on the output are detected. The dependencies

on the output are often observed while translating the serial code into parallel. Renaming or assigning a new variable for

the code segment leaves the output undisturbed [Table – 3].

Table III: Variable Renaming – Output Dependency

Original Code Parallel Code

X: = 3

A: = X + 3

Show A

X: = 7

Show X

Parallel Execution – 1

X1: = 3

A: = X1 + 3

Show A

Parallel Execution – 2

X: = 7
Show X

Nevertheless, the performance benefits are subjected to demonstration of mathematical model.

Lemma – 2: Avoiding Write After Write will reduce the chance of data hazards in case of concurrent execution.

Here,

T1 denotes the first instruction

T2denotes the second instruction

Proof: The serial instructions can be viewed as following:
1:

A

T

B C

SHOW A

 

 (Eq. 7)

2 :T

Z A X

SHOW Z

 

 (Eq. 8)

It is natural to understand that the serial execution policy applied on the T1 and T2 forces the execution order to be T1 and

then followed by T2. Further, the instruction sets can be re-written as

1:[Unchanged]

A

T

B C

SHOW A

 

 (Eq. 9)

And
2 :[Changed Renamed]T

Z K X

SHOW Z



 

 (Eq. 10)

Thus the effects of the Write and Write can be avoided during the translation into parallel codes.

Rule-3: The operators without deliberating the precedence must be reduced for any serial instruction.

Rule-3 Elaboration: The serial programming models executes the operators in a specified series in case of the similar

priority. The instructions execute the operators with the results achieved in the previous execution. Nevertheless, the

operators are not interdependent and executing them in parallel will not defer the final result. The trivial examples as

performing the sum operation of all the elements in the array can be performed in parallel in order to improve the

performance [Table – 4].

 Chennupalli Srinivasulu, Dr. Niraj Upadhyaya & Dr A.Govardhan 219

Table IV: Operator Reduction

Original Code Parallel Code

Loop

Do

Sum = Sum + A[i]

Done

Do_Parallel

Temp = Temp + A [i] + A [i + 1]

End_Parallel

Sum = Sum + Temp

Nevertheless, the performance benefits are subjected to demonstration of mathematical model.

Lemma – 3: Reducing the number of operators can significantly improve the performance of the serial code and can be

converted into parallel.

Here,

N denotes the number of operators in the instruction

T denotes the time to execute each instruction

Proof: In the serial execution model the operators will be executed sequentially and the total time for computation of N

operators can be calculated as,

1

()
N

N

i

T x T



 (Eq. 11)

Further converting the number of operators to be executed in parallel demands reduction in the operators,

1

()
2

N
N

i

T
T x



 
 (Eq. 12)

Where
()T x

 denotes the reduction in the first level.
Further,

1

()
()

2 4

N
N

i

TT x
T x




  

 (Eq. 13)

Hence, it is natural to understand that this geometric series will result into a finite series.

1
()

2n
T N 

 (Eq. 14)

Henceforth, the comparison between the serial execution time and parallel execution time needs to be compared and the

improvement is significant.

() T(x)T N 
 (Eq. 15)

Furthermore, these lemmas and the rules are to be used in the proposed algorithm demonstrated in the next section.

4. THE NOVEL CODE CONVERSION ALGORITHM

In this section of the work, the code conversion algorithm is designed and demonstrated.
Step-1. Partitioning the process of dividing the computation and the data into pieces.

Step-2. Communication The process of determining how tasks will communicate with each other, distinguishing between

local communication and global communication.

Step-3. Agglomeration The process of grouping tasks into larger tasks to improve performance or simplify programming.

Step-4. Mapping The process of assigning tasks to physical processors.

The benefits and the detailed explanation of the steps are constituted in the section – 3.

5. RESULTS AND DISCUSSIONS

The theoretical model is been evaluated on legacy C codes and the results are been observed. Firstly, the Matrix

multiplication code is been translated and the performance improvements are been observed [Table – 5].

Table V: Matrix Multiplication Code - Performance Improvements

Number of Elements Time in Serial Execution (ns) Time in Parallel Execution (ns) Improvements (ns)

128 0.16 0.3 -0.14

256 1.2 0.8 0.4

512 10 4 6

1024 170 30 140

The results are been observed graphically [Fig – 1].

A Framework For Conversion Of Serial Programming Paradigm Into Parallel Using Architecture

Independent Factors 220

Fig. 1 Matrix Multiplication Code - Performance Improvements

Secondly, the Array power code is been translated and the performance improvements are been observed [Table – 6].

Table VI: Array Power Code - Performance Improvements

Number of Elements Time in Serial Execution (ns) Time in Parallel Execution (ns) Improvements (ns)

1024 0.04 0.282 -0.242

4096 0.574 0.344 0.23

8192 2.284 0.486 1.798

16384 9.104 1.168 7.936

32768 36.402 3.884 32.518

65536 145.6 14.694 130.906

The results are been observed graphically [Fig – 2].

Fig. 2 Array Power Code - Performance Improvements

Thirdly, the Prime divisor codeis been translated and the performance improvements are been observed [Table – 7].

Table VII: Prime Divisor Code - Performance Improvements

Number of Elements Time in Serial Execution (ns) Time in Parallel Execution (ns) Improvements (ns)

1024 0.004 0.202 -0.198

4096 0.012 0.256 -0.244

8192 0.556 0.424 0.132

16384 2.112 1.108 1.004

32768 8.324 3.63 4.694

65536 33.1 13.64 19.46

The results are been observed graphically [Fig – 3].

Fig. 3 Prime Divisor Code - Performance Improvements

 Chennupalli Srinivasulu, Dr. Niraj Upadhyaya & Dr A.Govardhan 221

Thus with the understanding of the performance improvements, the work presents the conclusion in the next section.

6. CONCLUSION

The outbound growth in the space of Computer Architecture is encouraging the parallel programming into practice. The

recent advancements in processor architecture with the invention of GPGPUs made the parallel programming less costly.

Thus in the recent research various researchers have demonstrated various models for the parallel programming.

Nevertheless, the legacy systems that are build on serial programming models are also to be enhanced in order to take the

advantages from the architectural improvements. Majority of the Legacy systems are built using C programming language,

thus the frameworks for converting serial programs into parallel model like CUDA became highly popular and widely

accepted. Nevertheless, many researchers have also demonstrated the use of automatic code conversion frameworks. The

manual conversion of code demands a higher knowledge on parallel programming model and nonetheless a crucial task

for understand or maintaining the code during the conversion process. Nevertheless, the automatic conversion process
does not demand such higher level of understanding, but provides much lesser control of the code during the conversion

process. Henceforth, this work makes an attempt to formulate the manual conversion process and proposes a framework,

which can be automated further. The major outcome of this work is to standardize the steps for converting the serial

program into a parallel model using simple to follow and understandable steps. This work also establishes the factors to

realize the improvements using mathematic model and presents the results demonstrating nearly 70% reduction of

execution time, thus promises to provide a better programming world to serve the mission critical application needs.

7. REFERENCES
[1] A. R. Alameldeen and D. A. Wood, ―Variability in architectural simulators of multi-threaded workloads,‖ in Proc. 9th Int. Symp. High-Perform.

Comput. Archit., 2003, pp. 7–18.

[2] T. Kalibera and R. Jones, ―Rigorous benchmarking in reasonable time,‖ ACM SIGPLAN Notices, vol. 48, no. 11, pp. 63–74, 2013.

[3] T. Chen, Y. Chen, Q. Guo, O. Temam, Y. Wu, and W. Hu, ―Statistical performance comparisons of computers,‖ in Proc. Int. Symp. High Perform.

Comput. Archit., 2012, pp. 1–12.

[4] A. Georges, D. Buytaert, and L. Eeckhout, ―Statistically rigorous java performance evaluation,‖ ACM SIGPLAN Notices, vol. 42, no. 10, pp. 57–

76, 2007.

[5] D. J. Lilja, Measuring Computer Performance, A Practitioner’s Guide. Cambridge, U.K.: Cambridge Univ. Press, 2004.

[6] S. Krishnamurthi and J. Vitek, ―The real software crisis: Repeatability as a core value,‖ Commun. ACM, vol. 58, no. 3, pp. 34–36, 2015.

[7] NVIDIA, NVIDIA CUDA Compute Unified Device Architecture-Programming Guide, Version 3, 2010.

[8] Stone, J.E., Gohara, D., Guochun Shi, ―OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems‖, Computing in

Science and Engineering, Vol. 12, Issue 3, pp. 66-73, May 2010

[9] E. Alerstam, T. Svensson and S. Andersson-Engels, "Parallel computing with graphics processing units for high speed Monte Carlo simulation of

photon migration" , J. Biomedical Optics 13, 060504 (2008).

[10] Larsen E. S., Mcallister D., ―Fast matrix multiplies using graphics hardware‖, Proceedings of the 2001 ACM/IEEE Conference on

Supercomputing, Nov. 2001, pp. 55.

[11] Vladimir Glavtchev, Pinar Muyan-Ozcelik, Jeffrey M. Ota, John D. Owens, "Feature-Based Speed Limit Sign Detection Using a Graphics

Processing Unit", IEEE Intelligent Vehicles, 2011.

[12] Woetzel J., Koch R., ―Multi-camera realtime depth estimation with discontinuity handling on PC graphics hardware‖, Proceedings of the 17th

International Conference on Pattern Recognition (Aug. 2004), pp. 741–744.

[13] Rumpf M., Strzodka R., ―Level set segmentation in graphics hardware‖, Proceedings of the IEEE International Conference on Image Processing

(ICIP ’01), Oct. 2001, vol. 3, pp. 1103–1106.

[14] Purcell T. J., Buck I., Mark W. R., Hanrahan P., ―Ray tracing on programmable graphics hardware‖, ACM Transactions on Graphics 21, 3 (July

2002), pp 703–712.

[15] Knott D., Pai D. K., ―CInDeR: Collision and interference detection in real-time using graphics hardware‖, Proceedings of the 2003 Conference

on Graphics Interface, June 2003, pp. 73–80.

[16] Svetlin A. Manavski, "Cuda compatible GPU as an efficient hardware accelerator for AES cryptography" Proc. IEEE International Conference on

Signal Processing and Communication, ICSPC 2007, (Dubai, United Arab Emirates), November 2007, pp.65-68.

[17] T. D. Han and T. S. Abdelrahman, "hiCUDA: High-Level GPGPU Programming", IEEE Transactions on Parallel and Distributed Systems, Jan.

2011, vol. 22, no. 1, pp. 78-90.

[18] David B. Loveman, ―High Performance Fortran‖, IEEE Parallel & Distributed Technology: Systems & Technology, February 1993, v.1 n.1, pp

25-42.

[19] Leonardo Dagum and Ramesh Menon, ―OpenMP: An industry-standard API for shared-memory programming‖, IEEE Computational Science

and Engineering, 5(1):46–55, January–March 1998.

[20] VectorFabrics. vfAnalyst: Analyze your sequential C code to create an optimized parallel implementation. http://www.vectorfabrics.com/.

[21] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-W. Liao, E. Bugnion, and M. Lam, ―Maximizing multiprocessor performance with the

SUIF compiler‖, IEEE Comput. 29, 12, Dec. 1996, pp 84–89.

[22] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee, D. Padua, Y. Paek, B. Pottenger, L. Rauchwerger, and P.

Tu. ―Advanced Program Restructuring for High-Performance Computers with Polaris‖, IEEE Computer, December 1996, Vol. 29, No. 12, pages

78- 82.

[23] Johnson, S.P., Evans, E., Jin, H., Ierotheou, C.S., ―The ParaWise Expert Assistant—Widening accessibility to efficient and scalable tool

generated OpenMP code‖, WOMPAT, pp. 67–82 (2004).

A Framework For Conversion Of Serial Programming Paradigm Into Parallel Using Architecture

Independent Factors 222
ABOUT THE AUTHORS

Mr.Ch.Srinivasulu has obtained his B.Tech Degree from SV University,and M.Tech (CSE) from JNT

University, Hyderabad. He is having nearly 20 years experience in Industry as well as a faculty of

Computer Science and Information Technology departments. He is pursuing his PhD from JNTU

kakinada. His area of research includes Computer Architecture, Parallel Computing, Software

Engineering.

Dr. A.Govardhan is presently a Professor of Computer Science & Engineering at JNTUH Jawaharlal

Nehru Technological University Hyderabad (JNTUH), India. He did his B.E.(CSE) from Osmania
University College of Engineering, Hyderabad in 1992, M.Tech from Jawaharlal Nehru

University(JNU), New Delhi in 1994 and Ph.D from Jawaharlal Nehru Technological University,

Hyderabad in 2003. His area of interest Databases, Data Warehousing & Mining, Information

Retrieval,Computer Networks,ImageProcessing and Object Oriented Technologies.

Dr. Niraj Upadhyaya, Ph.D, is an eminent scholar, professor in the CSE Department and Dean of

Academics at J.B. Institute of Engineering & Technology, Hyderabad. He has his name established in

the field of "Parallel Computing" and has many articles, papers and journals to his name. He had his

Ph.D. from the University of West of England, Bristol, UK with the topic of "Memory Management of

Cluster HPCs". He has more than 20 years of experience.

